
Next Gen Open Video (NGOV) Requirements

Rationale
● Enable innovation in video compression technology at the speed of the web
● The web is built on open, vibrant technologies

Key to Priorities
0 = Critical. Can't launch without it.
1 = Important. If feature is a risk to the target launch date, requires an Eng+PM vote to defer.
2 = Optional. Nice to have but can be deferred to shorten or meet target launch date.

Core Bitstream Requirements

Priority Area Description

0 Quality improvement Reduce video bitrate by 50% with image quality
comparable to VP8 (SSIM, PSNR).

0 Theoretical decoding
complexity

No more than 40% higher than VP8.

0 Alt-ref frames In VP8 temporal layers use the Golden and Alt-Ref
frames so that they cannot be used for boosting
compression efficiency. An easy solution would be
to add more alt-refs.

0 Screensharing Reduce bitrate requirement by 80% for same
quality as VP8 in screensharing apps.

0 No profiles Maintain single bitstream profile for all use cases.
Any valid NGOV decoder must be able to decode
any NGOV bitstream.

1 No resolution limitations Support infinite video resolutions.

1 Frame level parallelism Ability to decode consecutive frames in parallel

1 Encoder latency Support independently encodable slices (i.e.,
eliminate need for full-frame latency). This is even
more important in resolutions greater than 1080p.

1 Encoded domain stream
stitching

Support taking multiple encoded streams and re-
format them into one steam without transcoding,
think creating a Brady Bunch experience without
transcoding.

2 Resolution independence A single encoded stream can be used to support
any resolution and bitrate. Also known as “golden
stream.”

Tools Requirements
A mature toolset is essential to building a content ecosystem (post-production, playback, etc.)
around the new codec.

Priority Area Description

0 Encoder feature parity w/
libvpx

Keep all encoding features from libvpx.

0 Deliver a separate decoder
for ARM

Standalone library, designed and optimized for
ARM v7 with Neon.

0 Deliver a separate encoder
for ARM

Standalone library, designed and optimized for
ARM.

1 Implementation decode
performance (desktop)

Software decoder must be able to decode
realtime 4K video on lowest-end Intel i5 Ivybridge
processor on the market in Q2 2013.

1 Implementation encode
performance (desktop)

Software encoder must be able to simulcast (i.e.,
simultaneous encode and decode) 1080p video on
lowest-end Intel i5 Ivybridge processor on market
in Q2 2013.

1 Implementation decode
performance (mobile)

Software decoder must be able to decode 1080p
video top 30% of phones in the market in Q2
2013.

1 Implementation encode
performance (mobile)

Software encoder must be able to simulcast 720p
video on top 30% of smartphones in the market in
Q2 2013.

1 Precise rate control We must provide encoding settings (quantizers,
dropped frames, etc.) so authors can get as close
as possible to the requested target bitrate.

1 Encoder autoconfigure Determine the best encoding settings based on
the source material and output use case.

1 Separate decoder for Intel Standalone library that only does decoding,
optimized for x86.

1 More rigorous testing Encourage commercial testing companies to cover
corner use cases.

2 Fast transcoder Enable "true" transcoding from VP8 and H.264 to
NGOV in 50% of time than decoding to raw and
recoding.

RTC Requirements
We have identified many techniques that we can implement in NGOV to create a better realtime
UX.

Priority Area Description

0 Signal denoising Improve webcam video denoising in the encoder.

0 Change resolution without
having to send a new key
frame.

When the network parameters changes we
may need to change the resolution dynamically.
Today we have to generate a key frame for
doing this, which shouldn't be necessary. Also
see "keyframes" in Bitstream section above.

0 Better control around the
quantizing in a frame

We should be able to get better and more even
rate control if we could get better QP adaptation
within a frame. This may be solved by additional
and more efficient segments.

0 Temporal prediction of motion
vectors

Extrapolate motion vectors from previous frame to
predict the vectors of the current frame to improve
coding efficiency.

1 Webcam sensor profiling To help denoising effort, create a table of how the
ten most popular webcams bring noise the image.

1 Add lossless compression &
transmit states

This can be useful for exchanging reference
buffers with an encoder at the send-side and
a decoder at the receive-side, which may be
useful when new participants join a conference
or when switching layers to avoid affecting other
participants.

1 Motion tracking Improve the codec’s ability to enable motion
tracking / face detection. If we could do this
using hooks in the encoder (an interface to query
the encoder for useful features such as motion
vectors, residuals etc,).

1 Denoising and deshaking
done in encoding path

Better stabilization of image could be done if done
in the encoding path (as opposed to pre- or post-
processing). This is very important for mobile use
cases.

1 Stream stitching Can we enable better/faster stream stitching?

1 Split partitions into packet-
size pieces

If we would decide to allow decoding with errors
in the future, it would be useful to have a way
to adapt partition sizes to packet sizes (~1200
bytes).

